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DYNAMIC ANALYSIS OF ADAPTIVE STRUCTURES WITH
EMBEDDED COMPLIANT MECHANISMS

1.0 Objectives

Development of analytical formulations to predict the dynamic performance of compliant
structures.

2.0 Status of Effort

A systematic method for dynamic analysis of compliant mechanisms was developed including
basic formulations for natural frequencies, modes, dynamic response, and frequency
characteristics. Methods for design sensitivity analysis were developed to investigate the effect
of various design parameters on the dynamic performance of compliant mechanisms. A micro
compliant stroke amplifier mechanism, for MEMS actuator application, is presented in this
report, as a design example, to demonstrate significant differences between static and dynamic
performance of compliant mechanisms. This general-purpose methodology can be applied to
adaptive structures for aerospace applications. The methodology was implemented in MATLAB
with user-friendly graphical interface.

In our current AFOSR contract, we are developing analytical formulations for synthesis of
compliant structures under deformation-dependent pressure loads (air loads).This report will
focus on work carried out on dynamic analysis under the contract number F49620-00-1-0178

3. 0 Summary of Accomplishments

3.1 Basic Research
The PIs, S. Kota, and N. Kikuchi have developed and tested the fundamental formulations for the

design of compliant mechanisms including the following tasks:

e (1996-1998)Given a set of functional requirements; that is forces and desired displacements,
determine an optimized topology (configuration) of a complaint mechanism.

e (1996-1998)Given the initial and final shape of a flexible body, determine the optimal
topology of a complaint mechanism that can produce the desired shape change using a single
actuator - external loading was not taken in to account in this preliminary investigation.

e (1997-1999)Given the topology of a compliant mechanism, determine the optimum size and
shape of all members of the mechanism such that energy efficiency is maximized.

e (1999-2000)Dynamic analysis of compliant mechanisms and determination of sensitivity
coefficients (THIS REPORT)

The results from the work supported by the AFOSR contract are published in the following
journal articles







S. Kota, J. Hetrick, Z. Li, L. Saggere, “Tailoring Unconventional Actuators Using Compliant
Transmissions: Design Methods and Applications,” IEEE/ASME Transactions on
Mechatronics, Vol. 4, Number 4, pp 396-408, December 1999.

Kota S., Hetrick J., Li Z., Rodgers S., Krygowski T., "Synthesizing High-Performance
Compliant Stroke Amplification Systems for MEMS, Proc. of the Thirteenth Annual
International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, Jan. 2000.
S. Kota, J. Joo, Zhe Li, et al. Design of Compliant Mechanisms: Applications to MEMS,
Analog Integrated Circuits and Signal Processing-An International Journal, 29, 7-15, 2001.
Kluwer Academic Publications.

Li Z., and S. Kota, “Dynamic Analysis of Compliant Mechanisms”, Proceedings of DETC
2002, 27" Biannual Mechanisms and Robotics Conference, September 29 — October 2,
Montreal, Canada

3.2 Technology Transition

1. Under a contract with WPAFB, the PI S. Kota has designed, fabricated and tested a 3-foot
wing section of NACA63418 profile embedded with compliant mechanisms. A low-speed wind
tunnel test revealed significant improvement in lift coefficient as the leading camber is changed.

2. An STTR contract with AFOSR is underway to develop high-frequency vortex generator for
active. flow control. The device utilizes a compliant stroke amplification mechanism in
conjunction with a piezo actuator. The project is in collaboration with Lockheed Martin Tactical
Aircraft Systems.

3.

In collaboration with Sandia National Labs, we developed novel compliant stroke

amplification mechanisms that are integrated with electrostatic linear actuators. The result was a
220-fold improvement in force per unit area (Figure 2A).
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A 20X Complaint Stroke Multiplier integrated with electrostatic linear actuator. A. Manufactured using Sandia
National Lab's advanced 5-level surface micromachining technology. B. The device operating at 27KHz, tested at
10" cycles without failure.






3.3 Inventions and Patent Disclosures

The following patent application was filed (work under previous AFSOR contract F§9620-96-1-
0205.

1. Joel Hetrick, Sridhar Kota, Displacement Amplification Structure, Serial number
09/658,058, Filed September 2000. UM reference number 2115-001740.

3.4 Benefits to AFSOR

e Lays a scientific foundation for designing multifunctional structures with embedded
actuation for applications to smart structures and MEMS.

e Scalable concepts in adaptive airfoils.

e Expand the scope and application of present day smart actuators such as PZTs and SMAs by
integrating a compliant transmission with an actuator to generate desired force-displacement
characteristics.

4.0 Personnel Supported
Sridhar Kota, PI/PD Professor of Mechanical Engineering, University of Michigan, Ann Arbor.
Dr. Zhe Li, Research Associate, Mechanical Engineering, University of Michigan, Ann Arbor.

Doctoral Students
Jin Yong Joo. Dr. Joo is nowa researcher at AFRL, Wright PattersonAFB.

Ms. Kerr-Jia Lu, Mechanical Engineering, University of Michigan, Ann Arbor.







5.0 TECHNICAL REPORT
5.1 Introduction

Designing a compliant mechanism for a specific application can be a complex problem with
many considerations. The basic trade-off is between the flexibility to achieve deformed motion
and the rigidity to sustain external load. Many researchers have addressed proposed various
synthesis techniques for creating a viable compliant mechanism [1-11] including topology and
shape optimization methods. Many of these methods for topology and dimensional synthesis are
based on kinetostatic design specifications and do not consider the dynamic effects in the design
stage. Therefore, the resulting designs are valid for static or low frequency applications. The
dynamic effects can be significant and for instance, a complaint mechanism may exhibit a very
different mechanical advantage at high frequencies compared to what it was designed for static
situations. The synthesis algorithms should, ideally, account for operating frequency before
generating an appropriate topology and dimensions. Towards this goal, we first developed
analysis formulations to investigate the dynamic behavior of compliant mechanisms.

In this report we present a systematic method for the dynamic analysis of compliant mechanisms
including differential equations of motion, formulae for natural frequencies and modes, dynamic
responses, dynamic compliance, and sensitivity analysis. A design example demonstrates the
significance and the effectiveness of these methods in improving the dynamic behavior.
Although the basic formulations developed in this work are well understood and reported in the
published literature, we tailored the formulations for elastic structures and the report highlights
the significance of dynamic response of compliant mechanisms and the need to account for the
same during the design phase. Additionally, methods to carry out sensitivity analysis are
developed to investigate the effect of various design parameters on the dynamic performance of
compliant mechanisms. In the next section, we present the basic dynamic analysis formulations.

5.2 Dynamic Equations of Compliant Mechanisms

The dynamic differential equations of a compliant mechanism can be derived using the finite
element method and take the form of

[M ]an {ﬁ}nxl + [C]an {lgénxl + [K ]nxn {D }nxl = {R }nxl 1)

where [M], [C] and [K] are system mass, damping and stiffness matrix respectively; {D} is the
set of generalized coordinates representing the translation and rotation deformations at each
element node in global coordinate system; {R} is the set of generalized external forces
corresponding to {D}; n is the number of the generalized coordinates (elastic degrees of freedom
of the mechanism). If we use frame elements shown in Fig. 1 in the formulation, the element
mass matrix and stiffness matrix can be written as Eq. (2) and Eq. (3).







Y (EL, p, 1)

Figure 1 Planar frame element in which EI, is the bending stiffness (£ is the modulus of
elasticity of the material, I, is the moment of inertia), p is the material density, /, is the original
length of the element. §; (i=1,2,...6) are nodal displacements expressed in local coordinate

system (x, ).
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where a =%, b =—%42%e—, A, is the cross sectional area of the element. The mass and

stiffness matrices of the element are derived from the kinetic energy and strain energy

expressions as follows:
d(oT ) oT
{—dt (—a sg)———a 5}—[m]e{ﬁ @

{2~ 1.6) 6

L)

where T is the kinetic energy and U is the strain energy of the element; {8} = [& & & & & &),
are the linear and angular deformations of the node at the element local coordinate system.
Detailed derivations can be readily found in finite element textbooks [12, 13]. Typically, a
compliant mechanism is discretized into many elements as in finite element analysis. Each
element is associated with a mass and a stiffness matrix as Eq. (2) and (3). Each element has its
own local coordinate system. We combine the element mass and stiffness matrices of all
elements and perform coordinate transformations necessary to transform the element local
coordinate system to global coordinate system. This gives the system mass [AM] and stiffness [K]
matrices. Capturing the damping characteristics in a compliant system is not so straightforward.
Even though, in many applications, damping may be small but its effect on the system stability
and dynamic response, especially in the resonance region, can be significant. The damping
matrix [C] can be written as a linear combination of the mass and stiffness matrices [14] and is
called proportional damping [C] which is expressed as

[C] = a[M] + B[K] (6)

where o and B are two positive coefficients which are usually determined by experiment. An
alternate method [15] of representing the damping matrix is expressing [C] as

[C]=[M][C"] )
, 1
The element of [C] is defined as Cj = 2¢ (signk;; YK, /M ), where signk,; = (K, /|k,|), K5
and Mj; are the elements of [K] and [M], {is the damping ratio of the material.

The generalized force in a frame element is defined as

m( 9. _ dy, 30,
R¢ =Z(Fv—é§—’_+F)j§+Mq 5—51.) (=12,...,6) 8)

j=1 i

where F; and M; are the jth external force and moment on the element acting at (x; ,y;), and m is
the number of the external forces acting on the element. The element generalized forces {R},=







[Rf R¢ RS R R¢ REY, are then combined to form the system generalized force {R}. The

second order ordinary differential equations of motion of the system, Eq. (1), can be directly
integrated with a numerical method such as Runge-Kutta method.

Another commonly used method to solve Eq. (1) is the so-called modal analysis technique. This
method first decouples the Eq. (1) with modal matrix, [®], into

#if+ 2€iwi§iL+wi22i =P, #=1,2,...,n) )

where Z; and P, are the ith normalized coordinate and force, &; is the damping coefficient
-added to the decoupled equations (typically &;=0.01-0.2), and w; is the ith circular natural

frequency of the system. Once the normalized coordinates {Z} are solved from Eq. (9), the node
deformation {D} can be determined by the transformation

{D} = [®]{Z} (10)

The determination of the modal matrix and natural frequency will be presented in next section.
Dynamic analysis and synthesis of compliant mechanisms are based on the solution of the
differential equations of motion of the system.

5.3 Dynamic Analysis
5.3.1 Natural frequencies and natural modes
In order to obtain the natural frequencies and natural modes of a system, undamped free
vibration equation is used because the damping has very little influence on the natural

frequencies of a system. From the free vibration of the system, we have the following modal
equation '

(k]-2IMDx.}=0}  G=1,2,...,m) (1)
The condition of non-zero solution of Eq. (11) is

|(x]-2.[M]j=0 (i=1,2, ...,n) (12)

From Eq. (12), we can obtain the eigenvalues A; (i=1, 2,...,n) of the system and A, =@}. The
cyclic frequency f; =w,/2n Hertz. By substituting each eigenvalue 4; into Eq. (11), the
eigenvector {X;} or the ith natural mode of the system can be determined. The modal matrix is
defined as

[@]=[{X1} {Xa} ... {Xu}] (13)

It can be used to decouple the differential equations of the system.







5.3.2 Time responses

The nodal displacements and rotations {D} of the compliant mechanism can be obtained by
solving the dynamic equation (1) under certain excitation and load conditions. The nodal velocity

and acceleration, {]§§ and {@ can also be solved directly through Eq. (1). The deformation

within an element can be determined by an interpolation technique. If we use linear interpolation
to approximate the axial deformation, and use third-order Hermite interpolation [12] to
approximate the bending deformation, the deformation at any point x within the element can be
expressed as

u= 1“l l+i64
LT | |
(14
y= 1—3x2+2x3 + x—zxz +£ + §—x—2-—2X3 + _£_+£
2B NZ R W7 R G

where u and v are deformations along x and y directions measured in the element local coordinate
system. The normal bending stress in the element is given by

P i (15)

where y is the distance of a point in the beam cross-section measured from the neutral surface.
The deformations and stresses in the compliant mechanism vary as a function of the independent
variable t (time).

5.3.3 Frequency characteristics

Modal testing or hammer tap testing theory has been successfully used for calculating the
frequency spectrum of a structure or a machine tool [16, 17]. It is also applicable to compliant
mechanisms. Basic frequency spectrum includes the amplitude-frequency characteristic
(dynamic compliance) and the phase-frequency characteristic of a system. Frequency
characteristic analysis is important to gain an understanding of the dynamic performance of a
compliant mechanism especially when it has a wide range of working frequency. The resonance
phenomenon can be examined through the amplitude-frequency characteristics of the system.
Even if the amplitude of the system output matches the design specification, the phase angle
between the input and output of the system may not meet the desired performance.
Mathematically, suppose the input force acting on the compliant mechanism is F(?), the output
displacement is Y(?), then the transfer function G(jw) of the system is defined as







"Y()e ™ dt .
J, Y -E”('.w) (16)

where Ep(jw) and Ey(jw) are complex energy spectrums of the input force and output
displacement. The integrations are the Fourier transform expressions and can be calculated by
FFT algorithm [18]. Dividing the complex energy spectrum by the integration time T, we obtain
the complex power spectra:

Sp (lw) = %EF (](O)

) (17)
S, o)=—E, (jo)
After expansion with the complex conjugate, the transfer function can be expressed as
Y — Sy (/w) — Sy (Jw) S; (](0) — Syr (]CO)
G(.]w) - . - . % f . -
Se(jo) S;(jw)-S;(j0) S (@) (18)

- RefSy (jo)}+ jIm{s, o)}

SFF (w)

where Sy (jo) is the complex conjugate of Sr(jw), Srr(j@) is the auto-power spectrum (real),
Syr(j@) is the cross-power spectrum (complex). The magnitude of G(jw is the dynamic
compliance of the system. The phase angle between the input force and output displacement is
defined as

Im{G(; a))}
RelGLo)} (19)

¢ =arctan

5.3.4 Sensitivities

Sensitivity analysis is an effective way to predict the influence of various physical parameters on
the performance of a compliant mechanism. It can be used very effectively to guide the redesign
efforts in tuning the design parameters for desired dynamic performance. Minimizing the
sensitivity of the response to system parameters can make the design robust and insensitive to
manufacturing errors or overload. The sensitivity formulae of the natural frequency and
vibration mode with respect to a certain physical parameter s of the system are derived as
follows. From Eq. (11) we have

{x.Y s ¥x,}=0 (20)

where [S[]z [K ]~ a),?‘ [M ]. Differentiating Eq. (20) with respect to s,

10
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By employing the following equ;llities
s, }x.}= fo} .. {x ,-}T [S,.]z{O},xn, and {X ,-}T [M Kx.}=1 [14], and rearranging the terms,
the sensitivity of the natural frequency to the design variable s can be derived from Eq. (21) as

90, 1 ape vkl y 1 ry v 3lM]
= =5 X} = {x.} 2co,-{X,-} - {x.} 22)

The sensitivity of natural mode can be derived in a similar way starting with Eq. (11) and is
given as

a—gf’-'—} = —([K]—a)',-2 [M])'] {agj] —20; a;:i I;M]“wi2 Q%?J}{Xz} (23)

where the physical parameter s of the system can be the mass, bending stiffness, length, or cross-
section of an element. The values of the natural frequency ®; and mode {X;} can be obtained

from Eq. (12) and Eq. (11).
5.4 Dynamic Performance of a Compliant Stroke Multiplier

A stroke amplification compliant mechanism is taken as a design example to illustrate the
dynamic performance of a compliant mechanism that was designed to meet only the kinetostatic
requirements. The mechanism was originally designed for motion amplification application in
the MEMS domain and was fabricated at Sandia National Labs (see Fig. 2). By combining a
stroke amplifier, with a very short stroke, high force and compact linear actuator, Sandia
Microsystems group was able to generate 220 times more force per unit area compared to their
earlier version without the stroke amplifier. The design shown in Fig. 2 was originally optimized
for maximum energy efficiency and to meet kinetostatic input/out put force-displacement
requirements. The goal was to design a 12X stroke multiplier for operation at high frequencies
(500Hz and above). The design optimization only accounted for static behavior. From the design
results obtained by the energy efficiency method [10], we determined that the compliant
multiplier has the geometric advantage (GA) = 12.1, and a 180 degree phase angle between the
output and the input. That is the input and the output are in opposite moving directions. The
right-half of the symmetric compliant mechanism is shown in Fig. 3. This mechanism is
discretized into 32 planar frame elements where m, and EI, are mass and bending stiffness of the

element i. The total number of nodal degrees of freedom is 38 for the mechanism shown in 3. It
should be noted that the dynamic performance of the half mechanism is the same as the whole
mechanism because both the mass and the stiffness of the half mechanism are reduced one half
compared with the whole mechanism. Since the focus was mainly on understanding the behavior
of the compliant mechanism, the mass of the micro actuator is not accounted for in the
computation. To verify the system performance, the actuator mass and the load must be taken in
to consideration.

11






Figure 2 Micrograph of a stroke-amplification mechanism integrated with an linear electrostatic
actuator. The device was fabricated at the Sandia National Labs using 5-level surface micro
machining technology called SUMMIT-V. The overall size (footprint) of the assembly shown
here is approximately 300 um x 500 pm. U.S. Patent number 6,175,170 B1.
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myg El¢ /w‘l support
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my, EI 12
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2 2 m7 EI7
m EII/ mg EIG mgy EIg
Fixed

support
Input

Figure 3 One-half model of a stroke amplification compliant mechanism.
The dynamic differential equations of the mechanism take the form of Eq. (1) where n=38. The

computed natural frequencies of the compliant mechanism are:

f,=3883.24 (Hertz),  f, =124,030.12 (Hertz),
£, =155,498.66 (Hertz), f, =182,115.04 (Hertz),
A
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Because the working frequency of the mechanism is in the range of [500, 5000](Hertz),
according to the values of natural frequencies, it can be estimated that the deformation shape of
the compliant mechanism is dominated by the first natural mode as shown in Fig. 4, where the
red line is the deformed position.

300

250

200

~150

>100

50

0

50 : : : : : ;
50 0 50 100 150 200 250 300

x (pm)
Figure 4: The first natural mode of the compliant mechanism.

Suppose a driving force F =13sin(w, t) (uN) is applied to the input port, where ®,, (rad/s) is the
operation speed. Although the driving force is a standard sine function, the time history of the
output displacement may be not an exact sine function. Figure 5 is a snap shot of dynamic
behavior between 16 and 24 motion cycles as the device is operating at 3000 Hz. Note that the
displacement (stroke) amplitude changes with each motion cycle. This phenomenon reflects the
dynamic complexity of the compliant mechanism because the amplitude as well as the phase of
the response changes with the actuation frequency.

The amplitude-frequency characteristic of the output displacement is shown in Fig. 6(a), from
which a non-linear relationship of the amplitude versus input frequency can be seen. In Fig. 6(a),
the frequency ratio refers to the ratio of the input frequency over the fundamental frequency.
Likewise, the displacement ratio refers to the amplitude of the output displacement over the
static displacement, which is equal to 24.13(um). The maximum value of the output
displacement at a given operation frequency can be quantitatively determined from the
amplitude-frequency characteristic curve.
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Figure 5: A snap shot of dynamic response when the input is operating at 3000 Hz. The figure
highlights the variations in output displacement (y-axis) in each motion cycle.

The spectrum of the phase difference between the output and input is shown in Fig. 6(b). In static

and low speed situations, the phase difference is near180°, coinciding with the intended design
result. That is, the input and the output are moving in directions opposite to each other. But
when the frequency ratio is over 0.9, the phase difference reduces quickly. At the resonant state,
the phase difference is near zero. The input and output move in the same direction. This is
exactly opposite of the intended performance. If the reversed phase is necessary for keeping the
system working properly, the analysis indicates that the mechanism must operate at frequencies
far away from the resonant state either at relatively low frequency or at very high frequencies.

The GA also changes with the operating frequency of the compliant mechanism. It can be seen
from Fig. 6(c) that the GA value vacillates around the static design result of 12.1:1. The reason
that GA changes with the input frequency is because the amplitudes of the input displacement
and output displacement do not change at a constant phase angle when input frequency changes.
Therefore, dynamic simulation is needed to determine the actual GA at the operating frequency.
For the stroke amplification mechanism, analysis indicates that the desired geometrical
advantage 12.1:1 can be maintained as long as the frequency ratio is less than 0.2 or one-fifth the

natural frequency.

The sensitivities of the fundamental natural frequency of the stroke amplification compliant
mechanism to the mass and bending stiffness of each element are calculated and the results are
presented in Fig. 7. Generally, increasing the bending rigidity and reducing the mass of the
mechanism will increase the natural frequency because the sensitivity to bending stiffness is

14
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positive, and the sensitivity to the mass is negative. The sensitivity analysis results of Fig. 7,
suggest that the most effective means to increase the fundamental frequency of the compliant
multiplier (refer to Fig. 2 for element positions) would be to

(a) reduce the mass of elements 15, and/or element 16
(b) reduce the mass of the output port,
(c) increase the bending stiffness of element 14.

This also suggests that the dynamic performance will be less sensitive to manufacturing errors in
elements other than the ones noted above. To verify this, we changed the cross-section of
element 14 from its original thicknessxheight of 2.5x1.25(um) to 1.25%2.5(um). The mass of
element 14 did not change, but the bending stiffness increased by four times. The fundamental
natural frequency increased from 3883.24(Hz) to 5192.40(Hz). If the same change was made to
element 13 (from original thicknessxheight = 2.5%1.25(um) to 1.25%2.5(um)), the fundamental
natural frequency will increase only from 3883.24(Hz) to 3968.51(Hz). The same change on
different elements brings very different results. For the same change in geometry, the change in
natural frequency was 1223.89(Hz). This demonstrates the effectiveness and necessity of
synthesizing a mechanism based on the sensitivity analysis.
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Figure 7(a) Sensitivity of fundamental frequency to the mass of various elements.
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Figure 7(b) Sensitivity of fundamental frequency to the bending stiffness of various elements.
5.5 Dynamic Analysis Software for Compliant Mechanisms

A compliant mechanism design and dynamic analysis software has been developed by the
authors using MATLAB. The software can solve for natural frequencies, natural modes, static
deformations and stresses, dynamic responses, frequency characteristics, and sensitivities. The
main user interface of this dynamic analysis software is shown in Fig. 8. Above results in the
numerical example section are obtained by using this analysis tool.
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Figure 8: Dynamic Analysis Software developed by Zhe Li and S. Kota, University of Michigan.

5.6 Conclusions

We developed a systematic method for performing dynamic analysis of compliant mechanisms
including the basic formulations. The report described the basic elements of dynamic analysis
such as natural frequencies, natural modes, dynamic response, frequency spectrum analysis, and
sensitivity analysis. The sensitivity analysis method forms the basis for dynamic synthesis of
compliant mechanisms (future work). The results from our dynamic analysis software were
verified experimentally by researchers at the Sandia National Labs for MEMS applications. As
illustrated in the design example, differences between static and dynamic behavior of compliant
mechanisms can be significant, and they should be accounted for during the design phase.
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